1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
//! This module provides data structures and Iterator implementations for the calculation of DNA
//! curvature.
//!
//! It includes the necessary data structures for representing the DNA data and the traits and
//! implementations for iterating over this data. The iterators provided allow for efficient and
//! convenient traversal and manipulation of the DNA data for the purpose of curvature calculation.
use crate::curve::matrix;
use std::collections::VecDeque;
use std::f64::consts::PI;
use std::iter::Iterator;
/// Represents the data for a triplet of nucleotides.
///
/// This struct contains the twist, roll, and tilt values for a triplet of nucleotides, as well as
/// the deltas `dx` and `dy` and the roll type. *`roll_type` may be removed from this struct in the
/// future to accommodate more-general matrix options.*
///
/// # Fields
///
/// * `twist`: The twist value for the triplet.
/// * `roll`: The roll value for the triplet.
/// * `tilt`: The tilt value for the triplet.
/// * `dx`: The delta x value, calculated based on the roll and tilt.
/// * `dy`: The delta y value, calculated based on the roll and tilt.
/// * `roll_type`: The type of roll (either simple or activated).
#[derive(Clone, Debug)]
struct TripletData {
twist: f64,
roll: f64,
tilt: f64,
dx: f64,
dy: f64,
roll_type: matrix::RollType,
}
/// An iterator-wrapping struct that yields TripletData from an inner `u8` iterator.
///
/// `TripletWindowsIter` wraps around another iterator that yields `u8` (representing nucleotides),
/// and looks up the roll/tilt/twist values for each triplet of nucleotides in the inner iterator,
/// then populates a `TripletData` struct with these values. While iterating, it also keeps track
/// of the sum of the twist values for the current window of triplets.
///
/// # Type Parameters
///
/// * `I`: The type of the inner iterator. Must be an iterator over `u8`.
///
/// # Fields
///
/// * `base_buffer`: A buffer that stores the current triplet of nucleotides.
/// * `inner`: The inner iterator that yields `u8`.
/// * `twist_sum`: The sum of the twist values for the current triplet.
/// * `roll_type`: The current roll type.
struct TripletWindowsIter<I: Iterator> {
base_buffer: VecDeque<u8>,
inner: I,
twist_sum: f64,
roll_type: matrix::RollType,
}
/// Implementation of the `Iterator` trait for `TripletWindowsIter` struct.
///
/// This iterator yields `TripletData` items, which are calculated based on the next three bases
/// as a sliding window from the inner iterator, as well as the current roll type.
///
/// # Type Parameters
///
/// * `I`: The type of the inner iterator. Must be an iterator over `u8`.
///
/// # Returns
///
/// The `next` method returns `Some(TripletData)` if there are enough items left in the inner
/// iterator, or `None` if there are not.
impl<I> Iterator for TripletWindowsIter<I>
where
I: Iterator<Item = u8>,
{
type Item = TripletData;
fn next(&mut self) -> Option<Self::Item> {
// Fill the buffer with the next three items from the inner iterator.
while self.base_buffer.len() < matrix::TRIPLET_SIZE {
if let Some(item) = self.inner.next() {
self.base_buffer.push_back(item);
} else {
break;
}
}
// When the buffer is full, calculate the twist, roll, and tilt values.
if self.base_buffer.len() >= matrix::TRIPLET_SIZE {
let triplet: Vec<u8> = self.base_buffer.iter().cloned().take(3).collect();
let twist = matrix::matrix_lookup(&triplet, &matrix::TWIST).unwrap();
let roll = match self.roll_type {
matrix::RollType::Simple => {
matrix::matrix_lookup(&triplet, &matrix::ROLL_SIMPLE).unwrap()
}
matrix::RollType::Active => {
matrix::matrix_lookup(&triplet, &matrix::ROLL_ACTIVE).unwrap()
}
};
let tilt = matrix::matrix_lookup(&triplet, &matrix::TILT).unwrap();
self.twist_sum += twist;
// Create a TripletData instance and return it.
let window = TripletData {
twist,
roll,
tilt,
dx: (roll * self.twist_sum.sin()) + (tilt * (self.twist_sum + PI / 2.0).sin()),
dy: (roll * self.twist_sum.cos()) + (tilt * (self.twist_sum + PI / 2.0).cos()),
roll_type: self.roll_type.clone(),
};
self.base_buffer.pop_front();
Some(window)
} else {
None
}
}
}
/// A trait for `u8` Iterators to yield `TripletData`.
///
/// `TripletWindowsIterator` is a trait for iterators over `u8` that provides a method for
/// transforming the iterator into a `TripletWindowsIter`. This allows for convenient conversion
/// of any iterator over `u8` into an iterator that yields triplets of nucleotides. This is
/// **layer 1** of the iterator stack.
///
/// # Type Parameters
///
/// * `Self`: The type implementing this trait. Must be an iterator over `u8`.
///
/// # Methods
///
/// * `triplet_windows_iter`: Takes a `RollType` and returns a `TripletWindowsIter` that yields
/// triplets of nucleotides from the original iterator.
trait TripletWindowsIterator: Iterator<Item = u8> + Sized {
fn triplet_windows_iter(self, roll_type: matrix::RollType) -> TripletWindowsIter<Self> {
TripletWindowsIter {
base_buffer: VecDeque::new(),
inner: self,
twist_sum: 0.0,
roll_type,
}
}
}
impl<I: Iterator<Item = u8>> TripletWindowsIterator for I {}
/// Represents the coordinates and associated data for a triplet of nucleotides.
///
/// `CoordsData` contains the x and y coordinates calculated from the `TripletData`, as well as
/// the `TripletData` itself. The `TripletData` is optional, but is only None at the very end
/// of the associated iterator.
///
/// # Fields
///
/// * `triplet_data`: The `TripletData` associated with these coordinates. This is `None` if there
/// is no associated data.
/// * `x`: The x coordinate.
/// * `y`: The y coordinate.
struct CoordsData {
triplet_data: Option<TripletData>,
x: f64,
y: f64,
}
impl CoordsData {
/// Constructor for `CoordsData`.
fn new(triplet_data: Option<TripletData>, x: f64, y: f64) -> Self {
CoordsData { triplet_data, x, y }
}
}
/// An iterator-wrapping struct that yields `CoordsData` from another iterator.
///
/// `CoordsIter` wraps around another iterator that yields `TripletData`, and yields `CoordsData`
/// calculated from the `TripletData` and the previous coordinates and deltas. It also keeps track
/// of whether it has yielded the tail coordinates yet.
///
/// # Type Parameters
///
/// * `I`: The type of the inner iterator. Must be an iterator over `TripletData`.
///
/// # Fields
///
/// * `inner`: The inner iterator that yields `TripletData`.
/// * `head`: A boolean that indicates whether the first `CoordsData` has been yielded yet.
/// * `tail`: A boolean that indicates whether the end of the iterator has been reached,
/// at which point one more `CoordsData` is yielded with no associated `TripletData`.
/// * `prev_x_coord`: The x coordinate from the previous `CoordsData`.
/// * `prev_y_coord`: The y coordinate from the previous `CoordsData`.
/// * `prev_dx`: The delta x from the previous `TripletData`.
/// * `prev_dy`: The delta y from the previous `TripletData`.
struct CoordsIter<I: Iterator> {
inner: I,
head: bool,
tail: bool,
prev_x_coord: f64,
prev_y_coord: f64,
prev_dx: f64,
prev_dy: f64,
}
impl<I: Iterator<Item = TripletData>> CoordsIter<I> {
/// Constructor for `CoordsIter`.
fn new(inner: I) -> Self {
CoordsIter {
inner,
head: false,
tail: false,
prev_x_coord: 0.0,
prev_y_coord: 0.0,
prev_dx: 0.0,
prev_dy: 0.0,
}
}
}
impl<I> Iterator for CoordsIter<I>
where
I: Iterator<Item = TripletData>,
{
type Item = CoordsData;
/// Implementation of `Iterator` trait for `CoordsIter` struct.
///
/// This method first tries to get the next `TripletData` from the inner iterator. If there is a next item,
/// it updates the previous deltas with the deltas from the current item and creates a new `CoordsData` with
/// the current `TripletData`.
///
/// If there are no more items in the inner iterator it yields one more new `CoordsData` without a
/// `TripletData` but with `x` and `y` filled in.
///
/// # Returns
///
/// A `Some(CoordsData)` with the next coordinates and `TripletData`, or `None` if there are no more items.
fn next(&mut self) -> Option<Self::Item> {
if let Some(triplet_data) = self.inner.next() {
let result = Some(self.create_coords_data(Some(triplet_data.to_owned())));
self.prev_dx = triplet_data.dx;
self.prev_dy = triplet_data.dy;
if !self.head {
self.head = true;
return self.next();
}
result
} else if !self.tail {
self.tail = true;
Some(self.create_coords_data(None))
} else {
None
}
}
}
impl<I> CoordsIter<I>
where
I: Iterator<Item = TripletData>,
{
/// Creates a `CoordsData` instance from an optional `TripletData`.
///
/// Helper to `CoordsIter::next()` that creates a `CoordsData` instance from the current
/// `TripletData` and the previous coordinates.
///
/// # Arguments
///
/// * `triplet_data` - An optional `TripletData` that will be included in the created `CoordsData`.
///
/// # Returns
///
/// A `CoordsData` instance with the calculated coordinates and the given `TripletData`.
fn create_coords_data(&mut self, triplet_data: Option<TripletData>) -> CoordsData {
let x_coord = self.prev_x_coord + self.prev_dx;
let y_coord = self.prev_y_coord + self.prev_dy;
self.prev_x_coord = x_coord;
self.prev_y_coord = y_coord;
CoordsData {
triplet_data,
x: x_coord,
y: y_coord,
}
}
}
/// A trait for `TripletData` Iterators to yield `CoordsData`.
///
/// `CoordsIterator` is a trait for iterators over `TripletData` that provides a method for
/// transforming the iterator into a `CoordsIter`. This allows for convenient conversion
/// of any iterator over `TripletData` into an iterator that yields `CoordsData`. This
/// is **layer 2** of the iterator stack.
///
/// # Type Parameters
///
/// * `Self`: The type implementing this trait. Must be an iterator over `TripletData`.
///
/// # Methods
///
/// * `coords_iter`: Returns a `CoordsIter` that yields `CoordsData` calculated from the
/// `TripletData` yielded by the original iterator.
trait CoordsIterator: Iterator<Item = TripletData> + Sized {
fn coords_iter(self) -> CoordsIter<Self> {
CoordsIter {
inner: self,
head: false,
tail: false,
prev_x_coord: 0.0,
prev_y_coord: 0.0,
prev_dx: 0.0,
prev_dy: 0.0,
}
}
}
impl<I: Iterator<Item = TripletData>> CoordsIterator for I {}
/// Represents the data for a rolling mean of the x and y coordinates.
///
/// # Fields
///
/// * `x_bar`: The weighted mean of the x coordinates.
/// * `y_bar`: The weighted mean of the y coordinates.
struct RollMeanData {
x_bar: f64,
y_bar: f64,
}
/// Represents the data for a rolling mean of the x and y coordinates.
///
/// The `RollMeanData` struct contains the weighted x and y means for a window of coordinates
/// that is 2 * `step_size` + 1 in length.
///
/// # Fields
///
/// * `inner`: The inner iterator that yields `CoordsData`.
/// * `buffer`: A buffer that stores the current window of coordinates.
/// * `step_size`: Half the size of the window minus one. In other words,
/// 2 * `step_size` + 1 is the size of the window.
/// * `x_roll_sum`: The sum of the x coordinates in the current window.
/// * `y_roll_sum`: The sum of the y coordinates in the current window.
struct RollMeanIter<I: Iterator> {
inner: I,
buffer: VecDeque<CoordsData>,
step_size: usize,
x_roll_sum: f64,
y_roll_sum: f64,
}
/// Implementation of the `Iterator` trait for `RollMeanIter`.
///
/// This iterator wraps another iterator of items of type `CoordsData` and computes
/// a rolling mean of the `x` and `y` values of the items.
impl<I> Iterator for RollMeanIter<I>
where
I: Iterator<Item = CoordsData>,
{
type Item = RollMeanData;
/// Computes the next item of the rolling mean iterator.
///
/// This method computes the rolling mean of the `x` and `y` values of the next
/// `window_size` items from the inner iterator, where `window_size` is `step_size * 2 + 1`.
///
/// The method returns `Some(RollMeanData)` if there are enough items in the inner iterator,
/// and `None` otherwise.
fn next(&mut self) -> Option<Self::Item> {
// Fill the buffer with the next three items from the inner iterator.
let window_size = self.step_size * 2 + 1;
while self.buffer.len() < window_size {
if let Some(item) = self.inner.next() {
self.x_roll_sum += item.x;
self.y_roll_sum += item.y;
self.buffer.push_back(item);
} else {
break;
}
}
if self.buffer.len() >= window_size {
// get the fron/back items without removing them and adjust the roll sum
let adj_x_roll_sum = self.x_roll_sum
- (0.5 * self.buffer.front().unwrap().x)
- (0.5 * self.buffer.back().unwrap().x);
let adj_y_roll_sum = self.y_roll_sum
- (0.5 * self.buffer.front().unwrap().y)
- (0.5 * self.buffer.back().unwrap().y);
let x_bar = adj_x_roll_sum / (window_size as f64 - 1 as f64);
let y_bar = adj_y_roll_sum / (window_size as f64 - 1 as f64);
let result = Some(RollMeanData { x_bar, y_bar });
let item = self.buffer.pop_front().unwrap();
self.x_roll_sum -= item.x;
self.y_roll_sum -= item.y;
result
} else {
None
}
}
}
/// A trait for iterators that can compute a rolling mean of `CoordsData`.
///
/// This trait extends the `Iterator` trait, adding a `roll_mean_iter` method that
/// wraps the iterator in a `RollMeanIter`. The `RollMeanIter` computes a rolling mean
/// of the `x` and `y` values of the items from the original iterator.
trait RollMeanIterator: Iterator<Item = CoordsData> + Sized {
/// Wraps the iterator in a `RollMeanIter`.
///
/// This method takes ownership of the iterator and returns a `RollMeanIter` that
/// computes a rolling mean of the `x` and `y` values of the items from the original iterator.
///
/// # Parameters
///
/// * `step_size`: half of the window size minus one. In other words, 2 * `step_size` + 1 is
/// the size of the window.
///
/// # Returns
///
/// A `RollMeanIter` that computes a rolling mean of the `x` and `y` values of the items.
fn roll_mean_iter(self, step_size: usize) -> RollMeanIter<Self> {
RollMeanIter {
inner: self,
buffer: VecDeque::new(),
step_size,
x_roll_sum: 0.0,
y_roll_sum: 0.0,
}
}
}
impl<I: Iterator<Item = CoordsData>> RollMeanIterator for I {}
/// An iterator that computes the Euclidean distance between pairs of items from an inner iterator.
///
/// `EucDistIter` wraps another iterator that yields `RollMeanData`. It computes the Euclidean
/// distance between each pair of items from the inner iterator.
///
/// # Fields
///
/// * `inner`: The inner iterator that yields `RollMeanData`.
///
/// * `buffer`: A buffer that stores 2 * `curve_step_size` + 1 items from the inner iterator.
///
/// * `curve_step_size`: The distance from the midpoint base in the window.
struct EucDistIter<I: Iterator> {
inner: I,
buffer: VecDeque<RollMeanData>,
curve_step_size: usize,
}
impl<I> Iterator for EucDistIter<I>
where
I: Iterator<Item = RollMeanData>,
{
type Item = f64;
/// Computes the next item of the Euclidean distance iterator.
///
/// This method computes the Euclidean distance between each pair of consecutive items
/// from the inner iterator. The Euclidean distance is computed as the square root of
/// the sum of the squares of the differences of the `x_bar` and `y_bar` values of the items.
///
/// The method returns `Some(f64)` if there are enough items in the inner iterator,
/// and `None` otherwise.
fn next(&mut self) -> Option<Self::Item> {
// Fill the buffer with the next three items from the inner iterator.
let window_size = self.curve_step_size * 2 + 1;
while self.buffer.len() < window_size {
if let Some(item) = self.inner.next() {
self.buffer.push_back(item);
} else {
break;
}
}
if self.buffer.len() >= window_size {
let left = self.buffer.front().unwrap();
let right = self.buffer.back().unwrap();
let curve = ((right.y_bar - left.y_bar).powf(2.0)
+ (right.x_bar - left.x_bar).powf(2.0))
.sqrt();
self.buffer.pop_front();
Some(curve)
} else {
None
}
}
}
trait EucDistIterator: Iterator<Item = RollMeanData> + Sized {
fn euc_dist_iter(self, curve_step_size: usize) -> EucDistIter<Self> {
EucDistIter {
inner: self,
buffer: VecDeque::new(),
curve_step_size,
}
}
}
impl<I: Iterator<Item = RollMeanData>> EucDistIterator for I {}
/// An iterator that computes the curvature of a DNA sequence.
///
/// `CurveIter` wraps an iterator that yields `u8` and computes the curvature of the DNA sequence
/// represented by the nucleotides.
///
/// # Fields
///
/// * `inner`: The inner iterator that yields `u8`.
pub struct CurveIter<I: Iterator<Item = u8>> {
inner: EucDistIter<RollMeanIter<CoordsIter<TripletWindowsIter<I>>>>,
curve_scale: f64,
}
impl<I: Iterator<Item = u8>> Iterator for CurveIter<I> {
type Item = f64;
/// Computes the next item of the curvature iterator.
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(|x| x * self.curve_scale)
}
}
/// Construct a `CurveIter` from an iterator that yields `u8`.
///
/// This function constructs a `CurveIter` from an iterator that yields `u8`. The `CurveIter`
/// computes the curvature of the DNA sequence represented by the nucleotides.
///
/// # Parameters
///
/// * `seq_iter`: An iterator that yields `u8`.
/// * `roll_type`: The type of roll (either simple or activated).
/// * `step_b`: Half of the window size minus one. In other words, 2 * `step_size` + 1 is
/// the size of the window.
/// * `step_c`: The distance from the midpoint base to the sides in the curve window.
impl<I: Iterator<Item = u8>> CurveIter<I> {
fn new(
seq_iter: I,
roll_type: matrix::RollType,
step_b: usize,
step_c: usize,
curve_scale: f64,
) -> Self {
Self {
inner: seq_iter
.triplet_windows_iter(roll_type)
.coords_iter()
.roll_mean_iter(step_b)
.euc_dist_iter(step_c),
curve_scale,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use approx::assert_relative_eq;
/// Below is a table of some of the expected values for the triplet iterator over the DNA
///
/// | pos|nuc|trip | ixs | twist | roll_s | tilt |twist_sum| dx_simp | dy_simp |
/// | --:| -:| --: | --: | -----: | ------: | -----: | ------: | ------: | ------: |
/// | 0 | C | CCA | 330 | 0.5986 | 0.7000 | 0.0000 | 0.5986 | 0.3945 | 0.5783 |
/// | 1 | C | CAA | 300 | 0.5986 | 6.2000 | 0.0000 | 1.1973 | 5.7725 | 2.2622 |
/// | 2 | A | AAC | 003 | 0.5986 | 1.6000 | 0.0000 | 1.7959 | 1.5596 | -0.3572 |
/// | 3 | A | ACA | 030 | 0.5986 | 5.8000 | 0.0000 | 2.3946 | 3.9408 | -4.2556 |
/// | 4 | C | CAT | 301 | 0.5986 | 8.7000 | 0.0000 | 2.9932 | 1.2860 | -8.6044 |
/// | 5 | A | ATT | 011 | 0.5986 | 0.0000 | 0.0000 | 3.5919 | 0.0000 | 0.0000 |
/// | 6 | T | TTT | 111 | 0.5986 | 0.1000 | 0.0000 | 4.1905 | -0.0867 | -0.0498 |
/// | 7 | T | TTT | 111 | 0.5986 | 0.1000 | 0.0000 | 4.7892 | -0.0997 | 0.0077 |
/// | 8 | T | TTG | 112 | 0.5986 | 6.2000 | 0.0000 | 5.3878 | -4.8387 | 3.8765 |
/// | 9 | T | TGA | 120 | 0.5986 | 10.0000 | 0.0000 | 5.9865 | -2.9238 | 9.5630 |
/// | 10 | G | GAC | 203 | 0.5986 | 5.6000 | 0.0000 | 6.5851 | 1.6653 | 5.3467 |
/// | 11 | A | ACT | 031 | 0.5986 | 2.0000 | 0.0000 | 7.1838 | 1.5674 | 1.2423 |
/// | 12 | C | CTT | 311 | 0.5986 | 4.2000 | 0.0000 | 7.7824 | 4.1892 | 0.3003 |
/// | 13 | T | TTT | 111 | 0.5986 | 0.1000 | 0.0000 | 8.3811 | 0.0864 | -0.0503 |
/// | 14 | T | TTT | 111 | 0.5986 | 0.1000 | 0.0000 | 8.9797 | 0.0431 | -0.0903 |
/// | 15 | T | TTT | 111 | 0.5986 | 0.1000 | 0.0000 | 9.5784 | -0.0153 | -0.0988 |
/// | 16 | T | TTG | 112 | 0.5986 | 6.2000 | 0.0000 | 10.1770 | -4.2363 | -4.5270 |
/// | 17 | T | TGG | 122 | 0.5986 | 0.7000 | 0.0000 | 10.7757 | -0.6831 | -0.1527 |
/// | 18 | G | GGG | 222 | 0.5986 | 5.7000 | 0.0000 | 11.3743 | -5.2961 | 2.1075 |
/// | 19 | G | GGA | 220 | 0.5986 | 6.2000 | 0.0000 | 11.9729 | -3.4670 | 5.1400 |
/// | 20 | G | GAG | 202 | 0.5986 | 6.6000 | 0.0000 | 12.5716 | 0.0345 | 6.5999 |
/// | 21 | A | AGG | 022 | 0.5986 | 4.7000 | 0.0000 | 13.1702 | 2.6688 | 3.8688 |
/// | 22 | G | GGG | 222 | 0.5986 | 5.7000 | 0.0000 | 13.7689 | 5.3178 | 2.0520 |
/// | 23 | G | GGC | 223 | 0.5986 | 8.2000 | 0.0000 | 14.3675 | 7.9834 | -1.8724 |
/// | 24 | G | GCA | 230 | 0.5986 | 7.5000 | 0.0000 | 14.9662 | 5.0670 | -5.5295 |
/// | 25 | C | CAC | 303 | 0.5986 | 6.8000 | 0.0000 | 15.5648 | 0.9700 | -6.7305 |
/// | 26 | A | ACT | 031 | 0.5986 | 2.0000 | 0.0000 | 16.1635 | -0.8799 | -1.7961 |
/// | 27 | C | CTA | 310 | 0.5986 | 7.8000 | 0.0000 | 16.7621 | -6.7820 | -3.8528 |
/// | 28 | T | TAG | 102 | 0.5986 | 7.8000 | 0.0000 | 17.3608 | -7.7738 | 0.6390 |
/// | 29 | A | AGC | 023 | 0.5986 | 6.3000 | 0.0000 | 17.9594 | -4.8961 | 3.9646 |
/// | 30 | G | GCA | 230 | 0.5986 | 7.5000 | 0.0000 | 18.5581 | -2.1553 | 7.1836 |
/// | 31 | C | CAC | 303 | 0.5986 | 6.8000 | 0.0000 | 19.1567 | 2.0560 | 6.4817 |
/// | 32 | A | ACC | 033 | 0.5986 | 5.2000 | 0.0000 | 19.7554 | 4.0920 | 3.2087 |
/// | 33 | C | CCT | 331 | 0.5986 | 4.7000 | 0.0000 | 20.3540 | 4.6897 | 0.3116 |
/// | 34 | C | CTA | 310 | 0.5986 | 7.8000 | 0.0000 | 20.9527 | 6.7208 | -3.9587 |
/// | 35 | T | TAT | 101 | 0.5986 | 9.7000 | 0.0000 | 21.5513 | 4.1302 | -8.7767 |
/// | 36 | A | ATC | 013 | 0.5986 | 3.6000 | 0.0000 | 22.1500 | -0.5693 | -3.5547 |
/// | 37 | T | TCT | 131 | 0.5986 | 6.5000 | 0.0000 | 22.7486 | -4.4660 | -4.7228 |
/// | 38 | C | CTA | 310 | 0.5986 | 7.8000 | 0.0000 | 23.3472 | -7.6209 | -1.6618 |
/// | 39 | T | TAC | 103 | 0.5986 | 6.4000 | 0.0000 | 23.9459 | -5.9340 | 2.3974 |
/// | 40 | A | ACC | 033 | 0.5986 | 5.2000 | 0.0000 | 24.5445 | -2.8853 | 4.3261 |
/// | 41 | C | CCC | 333 | 0.5986 | 5.7000 | 0.0000 | 25.1432 | 0.0596 | 5.6997 |
/// | 42 | C | CCT | 331 | 0.5986 | 4.7000 | 0.0000 | 25.7418 | 2.6890 | 3.8548 |
/// | 43 | C | CTG | 312 | 0.5986 | 9.6000 | 0.0000 | 26.3405 | 8.9743 | 3.4092 |
/// | 44 | T | TGA | 120 | 0.5986 | 10.0000 | 0.0000 | 26.9391 | 9.7238 | -2.3342 |
/// | 45 | G | GAA | 200 | 0.5986 | 5.1000 | 0.0000 | 27.5378 | 3.4259 | -3.7780 |
/// | 46 | A | AAT | 001 | 0.5986 | 0.0000 | 0.0000 | 28.1364 | 0.0000 | 0.0000 |
/// | 47 | A | ATC | 013 | 0.5986 | 3.6000 | 0.0000 | 28.7351 | -1.6006 | -3.2246 |
/// | 48 | T | | | | | | | | |
/// | 49 | C | | | | | | | | |
#[test]
fn test_triplet_iter_long() {
let dna = b"CCAACATTTTGACTTTTTGGGAGGGCACTAGCACCTATCTACCCTGAATC";
let windows: Vec<TripletData> = dna
.iter()
.cloned()
.triplet_windows_iter(matrix::RollType::Simple)
.collect();
assert_eq!(windows.len(), dna.len() - 2);
// check first two
assert_relative_eq!(windows[0].dx, 0.3945, epsilon = 1e-4);
assert_relative_eq!(windows[0].dy, 0.5783, epsilon = 1e-4);
assert_relative_eq!(windows[1].dx, 5.7725, epsilon = 1e-4);
assert_relative_eq!(windows[1].dy, 2.2622, epsilon = 1e-4);
// check last two
assert_relative_eq!(windows[46].dx, 0.0000, epsilon = 1e-4);
assert_relative_eq!(windows[46].dy, 0.0000, epsilon = 1e-4);
assert_relative_eq!(windows[47].dx, -1.6006, epsilon = 1e-4);
assert_relative_eq!(windows[47].dy, -3.2246, epsilon = 1e-4);
}
#[test]
fn test_triplet_iter_too_short() {
let dna = b"AC";
let windows: Vec<TripletData> = dna
.iter()
.cloned()
.triplet_windows_iter(matrix::RollType::Simple)
.collect();
assert_eq!(windows.len(), 0);
}
/// Below is a table of some of the expected values for the coords iterator over the DNA
///
/// | pos|nuc|trip | dx_simp | dy_simp | x_coord | y_coord |
/// | --:| -:| --: | ------: | ------: | -------: | -------: |
/// | 0 | C | CCA | 0.3945 | 0.5783 | | |
/// | 1 | C | CAA | 5.7725 | 2.2622 | 0.3945 | 0.5783 |
/// | 2 | A | AAC | 1.5596 | -0.3572 | 6.1670 | 2.8405 |
/// | 3 | A | ACA | 3.9408 | -4.2556 | 7.7266 | 2.4833 |
/// | 4 | C | CAT | 1.2860 | -8.6044 | 11.6674 | -1.7723 |
/// | 5 | A | ATT | 0.0000 | 0.0000 | 12.9534 | -10.3767 |
/// | 6 | T | TTT | -0.0867 | -0.0498 | 12.9534 | -10.3767 |
/// | 7 | T | TTT | -0.0997 | 0.0077 | 12.8667 | -10.4266 |
/// | 8 | T | TTG | -4.8387 | 3.8765 | 12.7670 | -10.4189 |
/// | 9 | T | TGA | -2.9238 | 9.5630 | 7.9283 | -6.5424 |
/// | 10 | G | GAC | 1.6653 | 5.3467 | 5.0045 | 3.0206 |
/// | 11 | A | ACT | 1.5674 | 1.2423 | 6.6698 | 8.3673 |
/// | 12 | C | CTT | 4.1892 | 0.3003 | 8.2372 | 9.6096 |
/// | 13 | T | TTT | 0.0864 | -0.0503 | 12.4264 | 9.9099 |
/// | 14 | T | TTT | 0.0431 | -0.0903 | 12.5128 | 9.8596 |
/// | 15 | T | TTT | -0.0153 | -0.0988 | 12.5559 | 9.7693 |
/// | 16 | T | TTG | -4.2363 | -4.5270 | 12.5406 | 9.6705 |
/// | 17 | T | TGG | -0.6831 | -0.1527 | 8.3043 | 5.1435 |
/// | 18 | G | GGG | -5.2961 | 2.1075 | 7.6212 | 4.9908 |
/// | 19 | G | GGA | -3.4670 | 5.1400 | 2.3251 | 7.0983 |
/// | 20 | G | GAG | 0.0345 | 6.5999 | -1.1419 | 12.2383 |
/// | 21 | A | AGG | 2.6688 | 3.8688 | -1.1074 | 18.8382 |
/// | 22 | G | GGG | 5.3178 | 2.0520 | 1.5614 | 22.7069 |
/// | 23 | G | GGC | 7.9834 | -1.8724 | 6.8792 | 24.7590 |
/// | 24 | G | GCA | 5.0670 | -5.5295 | 14.8626 | 22.8866 |
/// | 25 | C | CAC | 0.9700 | -6.7305 | 19.9296 | 17.3571 |
/// | 26 | A | ACT | -0.8799 | -1.7961 | 20.8995 | 10.6266 |
/// | 27 | C | CTA | -6.7820 | -3.8528 | 20.0197 | 8.8305 |
/// | 28 | T | TAG | -7.7738 | 0.6390 | 13.2377 | 4.9777 |
/// | 29 | A | AGC | -4.8961 | 3.9646 | 5.4639 | 5.6167 |
/// | 30 | G | GCA | -2.1553 | 7.1836 | 0.5678 | 9.5814 |
/// | 31 | C | CAC | 2.0560 | 6.4817 | -1.5875 | 16.7650 |
/// | 32 | A | ACC | 4.0920 | 3.2087 | 0.4685 | 23.2467 |
/// | 33 | C | CCT | 4.6897 | 0.3116 | 4.5605 | 26.4554 |
/// | 34 | C | CTA | 6.7208 | -3.9587 | 9.2502 | 26.7669 |
/// | 35 | T | TAT | 4.1302 | -8.7767 | 15.9709 | 22.8083 |
/// | 36 | A | ATC | -0.5693 | -3.5547 | 20.1012 | 14.0315 |
/// | 37 | T | TCT | -4.4660 | -4.7228 | 19.5319 | 10.4768 |
/// | 38 | C | CTA | -7.6209 | -1.6618 | 15.0659 | 5.7540 |
/// | 39 | T | TAC | -5.9340 | 2.3974 | 7.4450 | 4.0922 |
/// | 40 | A | ACC | -2.8853 | 4.3261 | 1.5109 | 6.4896 |
/// | 41 | C | CCC | 0.0596 | 5.6997 | -1.3743 | 10.8157 |
/// | 42 | C | CCT | 2.6890 | 3.8548 | -1.3148 | 16.5154 |
/// | 43 | C | CTG | 8.9743 | 3.4092 | 1.3742 | 20.3701 |
/// | 44 | T | TGA | 9.7238 | -2.3342 | 10.3485 | 23.7794 |
/// | 45 | G | GAA | 3.4259 | -3.7780 | 20.0722 | 21.4451 |
/// | 46 | A | AAT | 0.0000 | 0.0000 | 23.4981 | 17.6671 |
/// | 47 | A | ATC | -1.6006 | -3.2246 | 23.4981 | 17.6671 |
/// | 48 | T | | | | 21.8975 | 14.4425 |
/// | 49 | C | | | | | |
#[test]
fn test_coords_iter() {
let dna = b"CCAACATTTTGACTTTTTGGGAGGGCACTAGCACCTATCTACCCTGAATC";
let coords: Vec<CoordsData> = dna
.iter()
.cloned()
.triplet_windows_iter(matrix::RollType::Simple)
.coords_iter()
.collect();
let coords_len = coords.len();
assert_eq!(coords_len, dna.len() - 2);
// check first two
assert_relative_eq!(coords[0].x, 0.3945, epsilon = 1e-4);
assert_relative_eq!(coords[0].y, 0.5783, epsilon = 1e-4);
assert_relative_eq!(coords[1].x, 6.1670, epsilon = 1e-4);
assert_relative_eq!(coords[1].y, 2.8405, epsilon = 1e-4);
// check last two
assert_relative_eq!(coords[coords_len - 2].x, 23.4981, epsilon = 1e-4);
assert_relative_eq!(coords[coords_len - 2].y, 17.6671, epsilon = 1e-4);
assert_relative_eq!(coords[coords_len - 1].x, 21.8975, epsilon = 1e-4);
assert_relative_eq!(coords[coords_len - 1].y, 14.4425, epsilon = 1e-4);
}
/// Helper for test_rollmean_iter()
fn get_some_coords() -> Vec<CoordsData> {
let x_values = vec![
1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
];
let y_values = vec![
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0,
];
x_values
.into_iter()
.zip(y_values.into_iter())
.map(|(x, y)| CoordsData::new(None, x, y))
.collect()
}
#[test]
fn test_rollmean_iter() {
let rolls: Vec<_> = get_some_coords().into_iter().roll_mean_iter(2).collect();
assert_eq!(rolls.len(), 8);
// x̄₃ = (½x₁ + x₂ + x₃ + x₄ + ½x₅)/4
// x̄₃ = (0.5 + 2 + 3 + 4 + 2.5)/4 = 3
assert_relative_eq!(rolls[0].x_bar, 3.0, epsilon = 1e-4);
assert_relative_eq!(rolls[0].y_bar, 0.0, epsilon = 1e-4);
// x̄₃ = (½x₂ + x₃ + x₄ + x₅ + ½x₆)/4
// x̄₃ = (1 + 3 + 4 + 5 + 3)/4 = 16 / 4 = 4
assert_relative_eq!(rolls[1].x_bar, 4.0, epsilon = 1e-4);
assert_relative_eq!(rolls[2].x_bar, 5.0, epsilon = 1e-4);
assert_relative_eq!(rolls[7].y_bar, 10.0, epsilon = 1e-4);
let rolls: Vec<_> = get_some_coords().into_iter().roll_mean_iter(3).collect();
// x̄₃ = (½x₁ + x₂ + x₃ + x₄ + x₅ + x₆+ ½x₇)/6
// x̄₃ = (0.5 + 2 + 3 + 4 + 5 + 6 + 3.5)/6 = 24 / 6 = 4
assert_relative_eq!(rolls[0].x_bar, 4.0, epsilon = 1e-4);
assert_eq!(rolls.len(), 6);
}
/// | pos|nuc|trip | x_coord | y_coord | x_bar | y_bar |
/// | --:| -:| --: | -------: | -------: | -------: | -------: |
/// | 0 | C | CCA | | | | |
/// | 1 | C | CAA | 0.3945 | 0.5783 | | |
/// | 2 | A | AAC | 6.1670 | 2.8405 | | |
/// | 3 | A | ACA | 7.7266 | 2.4833 | | |
/// | 4 | C | CAT | 11.6674 | -1.7723 | | |
/// | 5 | A | ATT | 12.9534 | -10.3767 | | |
/// | 6 | T | TTT | 12.9534 | -10.3767 | 9.3566 | -3.7097 |
/// | 7 | T | TTT | 12.8667 | -10.4266 | 9.7739 | -2.9818 |
/// | 8 | T | TTG | 12.7670 | -10.4189 | 10.1124 | -2.2720 |
/// | 9 | T | TGA | 7.9283 | -6.5424 | 10.3897 | -1.3191 |
/// | 10 | G | GAC | 5.0045 | 3.0206 | 10.4121 | 0.2698 |
/// | 11 | A | ACT | 6.6698 | 8.3673 | 10.3716 | 2.2795 |
/// | 12 | C | CTT | 8.2372 | 9.6096 | 10.1228 | 4.0604 |
/// | 13 | T | TTT | 12.4264 | 9.9099 | 9.6374 | 5.6094 |
/// | 14 | T | TTT | 12.5128 | 9.8596 | 9.0999 | 7.0619 |
/// | 15 | T | TTT | 12.5559 | 9.7693 | 8.5125 | 8.2048 |
/// | 16 | T | TTG | 12.5406 | 9.6705 | 7.8163 | 9.1892 |
/// | 17 | T | TGG | 8.3043 | 5.1435 | 7.0936 | 10.3676 |
/// | 18 | G | GGG | 7.6212 | 4.9908 | 6.4825 | 11.7650 |
/// | 19 | G | GGA | 2.3251 | 7.0983 | 6.3226 | 13.1588 |
/// | 20 | G | GAG | -1.1419 | 12.2383 | 6.8088 | 14.1895 |
/// | 21 | A | AGG | -1.1074 | 18.8382 | 7.5954 | 14.6167 |
/// | 22 | G | GGG | 1.5614 | 22.7069 | 8.5991 | 14.8489 |
/// | 23 | G | GGC | 6.8792 | 24.7590 | 9.4657 | 15.0326 |
/// | 24 | G | GCA | 14.8626 | 22.8866 | 9.9035 | 14.9578 |
/// | 25 | C | CAC | 19.9296 | 17.3571 | 10.1459 | 14.7509 |
/// | 26 | A | ACT | 20.8995 | 10.6266 | 10.2074 | 14.5144 |
/// | 27 | C | CTA | 20.0197 | 8.8305 | 10.1287 | 14.4377 |
/// | 28 | T | TAG | 13.2377 | 4.9777 | 9.9582 | 14.5496 |
/// | 29 | A | AGC | 5.4639 | 5.6167 | 9.5616 | 14.8284 |
/// | 30 | G | GCA | 0.5678 | 9.5814 | 9.0830 | 15.2950 |
/// | 31 | C | CAC | -1.5875 | 16.7650 | 8.8452 | 15.7378 |
/// | 32 | A | ACC | 0.4685 | 23.2467 | 8.7809 | 15.9903 |
/// | 33 | C | CCT | 4.5605 | 26.4554 | 8.8479 | 16.1115 |
/// | 34 | C | CTA | 9.2502 | 26.7669 | 9.0384 | 16.0740 |
/// | 35 | T | TAT | 15.9709 | 22.8083 | 9.1846 | 15.8432 |
/// | 36 | A | ATC | 20.1012 | 14.0315 | 9.2424 | 15.3912 |
/// | 37 | T | TCT | 19.5319 | 10.4768 | 9.1639 | 14.7571 |
/// | 38 | C | CTA | 15.0659 | 5.7540 | 8.9154 | 14.1163 |
/// | 39 | T | TAC | 7.4450 | 4.0922 | 8.8110 | 13.6627 |
/// | 40 | A | ACC | 1.5109 | 6.4896 | 9.0710 | 13.4451 |
/// | 41 | C | CCC | -1.3743 | 10.8157 | 9.4459 | 13.5588 |
/// | 42 | C | CCT | -1.3148 | 16.5154 | 9.8141 | 14.1000 |
/// | 43 | C | CTG | 1.3742 | 20.3701 | 10.3540 | 14.8940 |
/// | 44 | T | TGA | 10.3485 | 23.7794 | | |
/// | 45 | G | GAA | 20.0722 | 21.4451 | | |
/// | 46 | A | AAT | 23.4981 | 17.6671 | | |
/// | 47 | A | ATC | 23.4981 | 17.6671 | | |
/// | 48 | T | | 21.8975 | 14.4425 | | |
/// | 49 | C | | | | | |
#[test]
fn test_rollmeans_from_seq() {
let dna = b"CCAACATTTTGACTTTTTGGGAGGGCACTAGCACCTATCTACCCTGAATC";
let step_size = 5;
let means: Vec<RollMeanData> = dna
.iter()
.cloned()
.triplet_windows_iter(matrix::RollType::Simple)
.coords_iter()
.roll_mean_iter(step_size)
.collect();
let means_len = means.len();
assert_eq!(means_len, dna.len() - 2 - 2 * step_size);
// check first two
assert_relative_eq!(means[0].x_bar, 9.3566, epsilon = 1e-4);
assert_relative_eq!(means[0].y_bar, -3.7097, epsilon = 1e-4);
assert_relative_eq!(means[1].x_bar, 9.7739, epsilon = 1e-4);
assert_relative_eq!(means[1].y_bar, -2.9818, epsilon = 1e-4);
// check last two
assert_relative_eq!(means[means_len - 2].x_bar, 9.8141, epsilon = 1e-4);
assert_relative_eq!(means[means_len - 2].y_bar, 14.1000, epsilon = 1e-4);
assert_relative_eq!(means[means_len - 1].x_bar, 10.3540, epsilon = 1e-4);
assert_relative_eq!(means[means_len - 1].y_bar, 14.8940, epsilon = 1e-4);
}
/// Helper for test_eucdist_iter()
fn get_some_means() -> Vec<RollMeanData> {
let x_values = vec![3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 8.0, 5.0, 17.0];
let y_values = vec![0.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, 10.0, 10.0];
x_values
.into_iter()
.zip(y_values.into_iter())
.map(|(x_bar, y_bar)| RollMeanData { x_bar, y_bar })
.collect()
}
#[test]
fn test_eucdist_iter() {
let mean_rolls: Vec<_> = get_some_means();
let vec_size = mean_rolls.len();
let curve_step_size = 2;
let euc_dists: Vec<_> = mean_rolls
.into_iter()
.euc_dist_iter(curve_step_size)
.collect();
// check curve_step_size number of items on both flanks are discarded
assert_eq!(euc_dists.len(), vec_size - 2 * (curve_step_size));
// √((7.0-3.0)² + (10.0-0.0)²) = √116 = 10.770329614269007
assert_relative_eq!(euc_dists[0], 10.7703, epsilon = 1e-4);
// √((8.0-4.0)² + (10.0-0.0)²) = √116 = 10.770329614269007
assert_relative_eq!(euc_dists[1], 10.7703, epsilon = 1e-4);
// √((8.0-5.0)² + (10.0-0.0)²) = √109 = 10.44031
assert_relative_eq!(euc_dists[2], 10.44031, epsilon = 1e-4);
// √((5.0-6.0)² + (10.0-0.0)²) = √101 = 10.04988
assert_relative_eq!(euc_dists[3], 10.04988, epsilon = 1e-4);
// √((17.0-7.0)² + (10.0-10.0)²) = √100 = 10.0
assert_relative_eq!(euc_dists[4], 10.0, epsilon = 1e-4);
}
/// | pos|nuc|trip | x_bar | y_bar | curve |
/// | --:| -:| --: | -------: | -------: | ------: |
/// | 0 | C | CCA | | | |
/// | 1 | C | CAA | | | |
/// | 2 | A | AAC | | | |
/// | 3 | A | ACA | | | |
/// | 4 | C | CAT | | | |
/// | 5 | A | ATT | | | |
/// | 6 | T | TTT | 9.3566 | -3.7097 | |
/// | 7 | T | TTT | 9.7739 | -2.9818 | |
/// | 8 | T | TTG | 10.1124 | -2.2720 | |
/// | 9 | T | TGA | 10.3897 | -1.3191 | |
/// | 10 | G | GAC | 10.4121 | 0.2698 | |
/// | 11 | A | ACT | 10.3716 | 2.2795 | |
/// | 12 | C | CTT | 10.1228 | 4.0604 | |
/// | 13 | T | TTT | 9.6374 | 5.6094 | |
/// | 14 | T | TTT | 9.0999 | 7.0619 | |
/// | 15 | T | TTT | 8.5125 | 8.2048 | |
/// | 16 | T | TTG | 7.8163 | 9.1892 | |
/// | 17 | T | TGG | 7.0936 | 10.3676 | |
/// | 18 | G | GGG | 6.4825 | 11.7650 | |
/// | 19 | G | GGA | 6.3226 | 13.1588 | |
/// | 20 | G | GAG | 6.8088 | 14.1895 | |
/// | 21 | A | AGG | 7.5954 | 14.6167 | 19.1012 |
/// | 22 | G | GGG | 8.5991 | 14.8489 | 17.7494 |
/// | 23 | G | GGC | 9.4657 | 15.0326 | 16.4319 |
/// | 24 | G | GCA | 9.9035 | 14.9578 | 15.0647 |
/// | 25 | C | CAC | 10.1459 | 14.7509 | 13.2434 |
/// | 26 | A | ACT | 10.2074 | 14.5144 | 11.3172 |
/// | 27 | C | CTA | 10.1287 | 14.4377 | 10.0444 |
/// | 28 | T | TAG | 9.9582 | 14.5496 | 9.3122 |
/// | 29 | A | AGC | 9.5616 | 14.8284 | |
/// | 30 | G | GCA | 9.0830 | 15.2950 | |
/// | 31 | C | CAC | 8.8452 | 15.7378 | |
/// | 32 | A | ACC | 8.7809 | 15.9903 | |
/// | 33 | C | CCT | 8.8479 | 16.1115 | |
/// | 34 | C | CTA | 9.0384 | 16.0740 | |
/// | 35 | T | TAT | 9.1846 | 15.8432 | |
/// | 36 | A | ATC | 9.2424 | 15.3912 | |
/// | 37 | T | TCT | 9.1639 | 14.7571 | |
/// | 38 | C | CTA | 8.9154 | 14.1163 | |
/// | 39 | T | TAC | 8.8110 | 13.6627 | |
/// | 40 | A | ACC | 9.0710 | 13.4451 | |
/// | 41 | C | CCC | 9.4459 | 13.5588 | |
/// | 42 | C | CCT | 9.8141 | 14.1000 | |
/// | 43 | C | CTG | 10.3540 | 14.8940 | |
/// | 44 | T | TGA | | | |
/// | 45 | G | GAA | | | |
/// | 46 | A | AAT | | | |
/// | 47 | A | ATC | | | |
/// | 48 | T | | | | |
/// | 49 | C | | | | |
#[test]
fn test_eucdist_iter_from_seq() {
let dna = b"CCAACATTTTGACTTTTTGGGAGGGCACTAGCACCTATCTACCCTGAATC";
let step_size = 5;
let curve_step = 15;
let curves: Vec<_> = dna
.iter()
.cloned()
.triplet_windows_iter(matrix::RollType::Simple)
.coords_iter()
.roll_mean_iter(step_size)
.euc_dist_iter(curve_step)
.collect();
let curves_len = curves.len();
assert_eq!(
curves_len,
dna.len() - 2 - (2 * step_size) - (2 * curve_step)
);
// check all
assert_relative_eq!(curves[0], 19.1012, epsilon = 1e-4);
assert_relative_eq!(curves[1], 17.7494, epsilon = 1e-4);
assert_relative_eq!(curves[2], 16.4319, epsilon = 1e-4);
assert_relative_eq!(curves[3], 15.0647, epsilon = 1e-4);
assert_relative_eq!(curves[4], 13.2434, epsilon = 1e-4);
assert_relative_eq!(curves[5], 11.3172, epsilon = 1e-4);
assert_relative_eq!(curves[6], 10.0444, epsilon = 1e-4);
assert_relative_eq!(curves[7], 9.3122, epsilon = 1e-4);
}
#[test]
fn test_curve_iter() {
let seq = b"CCAACATTTTGACTTTTTGGGAGGGCACTAGCACCTATCTACCCTGAATC";
let seq_len = seq.len();
let curves: Vec<_> = CurveIter::new(
seq.iter().cloned(),
matrix::RollType::Simple,
5,
15,
0.33335,
)
.collect();
assert_eq!(curves.len(), seq_len - (21 * 2));
assert_relative_eq!(curves[0], 6.3674, epsilon = 1e-4);
assert_relative_eq!(curves[1], 5.9168, epsilon = 1e-4);
assert_relative_eq!(curves[2], 5.4776, epsilon = 1e-4);
assert_relative_eq!(curves[3], 5.0218, epsilon = 1e-4);
assert_relative_eq!(curves[4], 4.4147, epsilon = 1e-4);
assert_relative_eq!(curves[5], 3.7726, epsilon = 1e-4);
assert_relative_eq!(curves[6], 3.3483, epsilon = 1e-4);
assert_relative_eq!(curves[7], 3.1042, epsilon = 1e-4);
}
}